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Motivation

Perceived shortage of STEM majors despite these fields
paying well.
The Obama Administration stands committed to providing
students at every level with the skills they need to excel in
the high-paid, highly-rewarding fields of science,
technology, engineering, and math (STEM). (White House
website)
100K in 10 program wants 100,000 more STEM teachers
(primary and secondary) within the next ten years.
The lack of STEM majors is not driven by a lack of interest:

48% of those pursuing a bachelor’s degree in a STEM field
leave, with half going to a non-STEM field and half dropping
out (NCES 2013)



Do universities want more STEM majors?

MAJOR CHOICES profiles more than 65 recent Princeton
graduates who followed their intellectual passions to major in
subjects they loved, subjects that in most cases bore very little
obvious connection to the careers they have subsequently
pursued. Its purpose is to encourage undergraduates to follow
their intellectual passions and study what they love, with
confidence in the fulfilling lives that lie ahead and the
knowledge that in no way will their choice of major limit
the career choices they may wish to make in the future.

The book focuses on many of the smaller departments in order
to encourage undergraduates to be imaginative and
open-minded about their choices and to take the fullest
advantage of the many intellectual opportunities available to
them at Princeton.

(emphasis added)



University Response

Universities may not want to see more students in STEM
fields if it comes at the expense of other departments.
Princeton’s push for enrollments in smaller departments
has been somewhat successful, with the largest
percentage shifts in classics, music, Slavic languages and
literature, comparative literature, and religion. (Princeton
website)
But universities (or their professors....) may engage in
other activities that encourage more even representation
across majors:

differences in grading standards
differences in workloads



University of Kentucky

Grading standards and workloads differ substantially
across departments
STEM instructors give lower grades than their counterparts

Unadjusted difference in grades is around 0.3.

and have higher study times:

Students in STEM classes study an extra 45 minutes per
week, off a base of 2.3 hours a week.

These differences occur despite STEM classes drawing
students with higher test scores.
Suggests universities are actually subsidizing students to
go into low paying majors...



Why are STEM classes different?

We want to separate out how much of the differences across
departments are driven by:

Student demand for courses
Professor preferences



Why does it matter?

Harsher grading in STEM classes affects enrollment; many
come in intending to major in STEM but then attrit.
Who switches is predictable: those with the least
preparation and worst performance within a school are
much more likely to switch.

Controlling for academic background virtually eliminates
racial differences in STEM persistence (at least at Duke...).

How courses are graded affects not only the number of
STEM majors but also their composition.



Women and STEM

But women are both less likely to begin in STEM and more
likely to switch out of STEM. This is surprising because:

Women are just as academically prepared as men.
Women study significantly more than men (about 2 hours a
week at both Duke and Berea)

Higher study times by women may reflect both:
Lower costs of studying
Valuing grades more

where the first makes STEM more attractive, the second
makes STEM less attractive



Women and STEM 2

Suppose women both have lower costs of studying and
value grades more than men.
A policy that restricts average grades to be the same
across classes would result in:

Differences in average grades between STEM and
non-STEM falling
STEM classes requiring even more work relative to
non-STEM classes

With average grades and workload going up in STEM,
STEM becomes relatively more attractive to women.



Our approach

Using transcript and course evaluation data from the University
of Kentucky

Estimate grade production functions
Estimate student choices of courses and effort conditional
on the grade production functions
Estimate professor preference parameters given:

Estimates of the grade production parameters for all
courses
Estimates of student preferences



Data

Administrative data from the University of Kentucky -
Lexington (UK)
Full data: Fall, 2008 - Spring, 2013
Our Sample: Fall, 2012

20,343 unique students
100,811 student-course observations

Also have data on course evaluations which we use to get
average study time



Descriptive Statistics by Gender

Men Women
High school GPA 3.13 3.34

(1.20) (1.16)
ACT Score 25.2 24.4

(4.42) (4.18)
Fall 2012 GPA 3.02 3.24

(0.713) (0.665)
Fall 2012 Credits 11.7 12.0

(4.29) (4.22)
STEM Major 38.0% 23.8%

Note: Fall 2012 University of Kentucky undergraduate students,
9,729 men, 9,798 women. Standard deviations in parentheses.



Descriptive Statistics by Course Type

STEM Non-STEM
Class Size 78.1 46.3

(101.1) (64.0)
Average Grade 3.03 3.31

(0.50) (0.46)
Average Grade | Female 3.11 3.40

(0.59) (0.46)
Study Hours 3.61 2.70

(1.68) (1.12)
Percent Female 37.0% 55.9%

Note: Fall 2012 University of Kentucky courses with
enrollments of 16 or more students, 379 STEM courses, 1,164
non-STEM courses. For study hours, 293 STEM courses and
793 non-STEM courses. Standard deviations in parentheses.



Regressions of Grades and Study Time on
Characteristics of the Individual and/or Class

Study hours
Dependent Var. Grade per week
STEM Class -0.325 0.520

(0.009) (0.148)
Female 0.140

(0.008)
Percent Female 0.395 0.547

(0.203) (0.191)
Average Grade -0.635

(0.089)
ln(Class Size) -0.116 -0.396

(0.004) (0.048)
Observations 72,449 1,085

Note: Additional controls for grades regression include, minority
status, freshman, STEM major, pell grant, in-state student, ACT
score, HS gpa, percent minority, percent freshman.
Additional controls in study hours regression include percent
freshmen, percent STEM major, percent pell grant, percent
in-state, average ACT score, average HS gpa, percent minority.



Grade Production

j = [1, . . . , J] indexes courses, each course j belongs to an
area of study k .
Aij is i ’s preparation for course j .
Grades for i in course j , gij , are given by:

gij = βj + γj
(
Aij + ln(sij)

)
+ ηij

where sij refers to study time and ηij is noise.
βj and γj are set by the professor (restricted to linear
grading policies)
sij is set by the student.



Course Utility

Utility for choosing course j is given by:

Uij = φiE
[
gij
]
− ψisij + δij

Students then solve the following maximization problem
when choosing their optimal course bundle:

max
di1,...,diJ

J∑
j=1

dijUij (1)

subject to:
J∑

j=1

dij = n, dij ∈ {0,1}∀j



Study Effort

The optimal study effort in course j can be found by
differentiating Uij with respect to sij :

0 =
φiγj

sij
− ψi

s?ij =
φiγj

ψi
(2)

Substituting the optimal choice of study time into the utility
function yields:

Uij = φi
(
βj + γj

[
Aij + ln(φi) + ln(γj)− ln(ψi)− 1

])
+ δij (3)



Reduced form grade equation

Substituting the expression for optimal study time into the grade
process equation yields:

gij = βj + γj
(
Aij + ln(φi) + ln(γj)− ln(ψi)

)
+ ηij (4)

Professors who set relatively higher values of γj see more study
effort because higher γj ’s induce more effort and because
higher γj ’s attract students with lower study costs.



Estimation

The key equations for estimation are given by:
(i) the solution to the students maximization problem after

substituting in optimal study effort,
(ii) the reduced form grade production process, and
(iii) the optimal study effort.



Parameterizations

Aij = wiα1k(j) + Xiα2k(j) Preparation in field k(j)
δij = δ0j + wiδ1k(j) + Zijδ2k(j) + εij Preference for course j
ψi = exp (ψ0 + wiψ1 + Xiψ2) Study costs

φi = φ0 + wiφ1 Preferences for grades

where:
wi is an indicator for female
Xi includes ACT scores, other family background
characteristics
Zij includes year of the student interacted with level of the
course as well as female cross female instructor
εij i.i.d. Type 1 extreme value preference shock



Grade parameters

Estimate the following by NLLS:

gij = θ0j + γj
(
wiθ1k(j) + Xiθ2k(j)

)
+ ηij (5)

where:

θ0j = βj + γj(ln(φ0) + ln(γj)− ψ0)

θ1k(j) = α1k(j) + ln(φ0 + φ1)− ln(φ0)− ψ1

θ2k(j) = α2k(j) − ψ2

The variation in the data used to identify {θ1k(j), θ2k(j)}
comes from the relationship between student
characteristics and grades.
The γj ’s are identified from how these characteristics
translate into grades relative to the normalized course.



Study parameters

We assume that the relationship between log study hours
and log study effort is linear; and that log study hours is
reported with measurement error ζij :

ln(hij) = µ ln(s∗ij ) + ζij

= µ
(
ln(µ1) + ln(φi) + ln(γj)− ln(ψi)

)
+ ζij

= κ0 + wiκ1 + Xiκ2 + ln(γj) + ζij

where:

κ0 = µ(ψ0 + ln(φ0))

κ1 = µ(ln(φ0 + φ1)− ln(φ0)− ψ1)

κ2 = −µψ2

Peter



Study parameters 2

Needed to normalize one γ to one for each department in
the grade estimation. We can now undo this normalization.
Namely, we estimated γN

j = γj/Ck(j) where Ck(j) is a
group-specific constant.
Substituting in for ln(γ) with ln(γ∗) + ln(Ck(j)) yields our
estimating equation:

ln(hij) = κ̃0 + wiκ1 + Xiκ2 + κ3k(j) + µ2 ln(γ̂∗) + ζij (6)

where κ3k(j) = µ2 ln(Ck(j)/C1) and κ̃0 = κ0 + ln(C1).
We can then partially undo the normalization on the γ’s,
with γ̂P

j = γ̂N
j exp(κ̂2k(j)/µ̂2) now normalized with respect to

one course.
We don’t actually observe linked course evaluation records
but we do know year in school so our estimating equation
is formed from averaging across individuals by year of
school.

Peter

Peter

Peter

Peter

Peter



Utility parameters

̂E [gij |s∗ij ] = θ̂0j + γ̂N
j

(
wi θ̂

N
1k(j) + Xi θ̂

N
2k(j)

)

Uij = δ0j+wiδ1k(j)+Zijδ2k(j)+ ̂E [gij |s∗ij ](φ0+wiφ1)+C1γ̂
P
j (φ0+wiφ1)+εij

φ0 and φ1 are identified from sorting into classes that
reward a student’s abilities more: lower ability students
have a relative preference for courses with low γ’s.
With these estimates we can recover all remaining
structural parameters.



Sketch of simulated maximum likelihood procedure

Even with Type 1 extreme value errors estimation is
complicated because students are choosing bundles of
courses.
Denote Ki as the set of courses chosen by i .
Denote Mi as the highest payoff associated with any of the
non-chosen courses:

Mi = max
j /∈Ki

δ0j+wiδ1k(j)+Zijδ2k(j)+
(

Ê [gij ]− γ̂j

)
(φ0+wiφ1)+εij

Suppose Ki consisted of courses {1,2,3} and that the
values for all the preference shocks, the εij ’s, were known
with the exception of those for {1,2,3}.



Sketch of simulated maximum likelihood procedure 2

The probability of choosing {1,2,3} could then be
expressed as

Pr(di = {1,2,3}) = Pr(U i1 > Mi ,U i2 > Mi ,U i3 > Mi)

= Pr(U i1 > Mi)Pr(U i2 > Mi)Pr(U i3 > Mi)

= (1−G(Mi − U i1))(1−G(Mi − U i2))

×(1−G(Mi − U i3))

where G(·) is the extreme value cdf and U ij is the flow
payoff for j net of εij .



Simulated maximum likelihood procedure

Since the εij ’s for the non-chosen courses are not
observed, we integrate them out of the likelihood function
and approximate the integral by simulating their values
from the Type I extreme value distribution.
Denoting Mir as the value of Mi at the r th draw of the
non-chosen εij ’s and R as the number of simulation draws,
estimates of the reduced form payoffs come from solving:

max
φ,δ

∑
i

ln

 R∑
r=1

J∏
j=1

(
1−G(Mir − U ij)

)dij

 /R
 (7)



Unobserved heterogeneity

Assume individuals are one of S unobserved types.
In practice, two.

Unobserved type is a component of ability and through
ability affects course selection.
Estimation of grades is easy, but the choice model is hard.
Following Arcidiacono and Miller (2011), use the EM
algorithm with a reduced-from choice model that gives
estimates of:

1 the grade parameters
2 the conditional probabilities of being each unobserved type

Use the conditional type probabilities as weights to recover
the study and choice parameters.



Implications of Demand-side Estimates

Demand-side estimates allow us to decompose differences in
course choices, grades, and study effort between males and
females into parts due to:

(i) differences in preferences (both over departments and
over having a female professor),

(ii) differences in value of grades (φi ),
(iii) differences in study costs (ψij ),
(iv) differences in preparation (Aik(j)),
(v) differences in grading practices ({βj , γj})



The Professor’s Problem

Professor payoffs are assumed to be a function of:
(i) the total amount of learning in the course: a(β, γ),
(ii) total enrollment: b(β, γ), and
(iii) student study time: c(β, γ).
where learning for individual i in course j is given by:

Lij(γj) = Aik(j) + ln(s∗ij )
= Aik(j) + ln(φi) + ln(γj)− ln(ψi) (8)



Professor Objective Function

Vj (β, γ) = λ0jaj (β, γ)− λ1jbj (β, γ)− λ2jcj (β, γ)

= λ0j

[∑
i

Pij (β, γ)
(
Aij + ln (φi) + ln

(
γj
)
− ln (ψi)

)]

−λ1j

[∑
i

Pij (β, γ)

]2

− λ2j

[∑
i

Pij (β, γ)

(
φiγj

ψi

)2
]

where we normalize λ0j to one.



Solution to the Professor’s Problem

The choice of βj and γj satisfy the two first order conditions:

∂Vj

∂βj
= 0 =

∂a(β, γ)
∂βj

− λ1j
∂b(β, γ)
∂βj

− λ2j
∂c(β, γ)
∂βj

(9)

∂Vj

∂γj
= 0 =

∂a(β, γ)
∂γj

− λ1j
∂b(β, γ)
∂γj

− λ2j
∂c(β, γ)
∂γj

(10)

The solution to this system is then:

[
λ1j
λ2j

]
=

[
∂b(β,γ)
∂βj

∂c(β,γ)
∂βj

∂b(β,γ)
∂γj

∂c(β,γ)
∂γj

]−1 [ ∂a(β,γ)
∂βj

∂a(β,γ)
∂γj

]
(11)

By substituting in the estimates of the professor’s own grading
practices, the estimates of the grading practices of the other
professors, and the estimates of student preferences, the right
hand side is known.



Counterfactuals

How course choices, study time, and average grades
would change if STEM professors had the same
preferences as non-STEM professors.
How grading practices would change in response to
restriction on grading policies such as capping the fraction
of high grades.



Results: Preference Parameters

Preference for: Coeff. Std. Error
Expected grades (φ) 0.4157 (0.0199)
Female × expected grades 0.0759 (0.0157)
Female × female professor 0.1455 (0.0186)
C1 (normalizing constant) 0.9581 (0.2593)

Female preferences for Departments
Engineering -1.0615 (0.0737)
Econ., Fin., Acct. -0.5091 (0.0593)
Social Sciences -0.2862 (0.0545)
Communication -0.1528 (0.0537)
Chemistry & Physics -0.1482 (0.0599)
Languages -0.1033 (0.0582)
Mathematics -0.0072 (0.0688)
Mgmt. & Mkting. 0.1153 (0.0662)
Regional Studies 0.2216 (0.0698)
Biology 0.2546 (0.0638)
Education & Health 0.3287 (0.0581)
Psychology 0.3758 (0.0659)
English 0.4167 (0.0769)

Note: Agriculture normalized to zero.



Results: Study Effort and Returns in Median Courses

Study Effort Median γ
Coeff. (−ψ) Std. Error Department Coeff.

Female -0.074 -0.080 Mathematics 3.59
ACTR (0’s) -0.002 -0.010 Engineering 3.11
ACTM (0’s) -0.018 -0.011 Biology 2.00
HS GPA -0.004 -0.087 English 1.80
Black 0.234 -0.172 Chem & Phys 1.78
Hispanic -0.317 -0.252 Psychology 1.64
Other Min. -0.269 -0.261 Econ., Fin., Acct. 1.49
First Gen 0.107 -0.115 Regional Studies 1.49
Unobs. Type 0.198 -0.084 Communication 1.37

Effort elasticity Languages 1.34
ln(γ) 0.545 (0.206) Social Sciences 1.24

Agriculture 0.92
Mgmt. & Mkting. 0.80
Education & Health 0.77



Professor Preferences

Disutility of:
Level Category Enrollment2 (λ1j ) Study Time2 (λ1j )

Mean Std. Dev. Mean Std. Dev.
Lower non-STEM 0.039 0.023 0.230 0.179
Level STEM 0.023∗ 0.017 0.063∗ 0.077

Upper non-STEM 0.048∗,† 0.022 0.304∗,† 0.215
Level STEM 0.035∗,† 0.016 0.136∗,† 0.237



Counterfactuals

Examine how the STEM gap changes given five changes to the
environment:

1 No differences between men and women in their
preferences for grades (φ1 = 0)

2 No differences in unobserved abilities (α1 = 0)
3 No differences in observed abilities (X f = X m)
4 No differences tastes for departments
5 No differential preference for female professors
6 Equalized expected grades across courses for the average

student

Peter



PE and GE responses to changing female tastes and
abilities on share STEM

PE Female GE Female GE Male
Increase Increase Increase

Turn off... Over Base Over Base GE/PE Over Base
(1) grade prefs 0.94% 0.26% 27.5% -0.43%
(2) gender ability 3.78% 1.52% 40.3% -1.79%
(3) obs ability 0.50% 0.37% 74.4% -0.15%
(4) tastes 1.54% 0.78% 50.2% -0.92%
(5) female prof pref 0.40% 0.16% 39.1% -0.22%

Baseline female: 28.40%
Baseline male: 40.02%



Supply-side Counterfactuals

Examine how changing grading practices affects the STEM gap
by:

1 Setting expected grades to be the same across classes for
the average student by shifting course intercepts

2 Adjust STEM professor preferences so that the averages
are similar across STEM and non-STEM professors and
solving for the new equilibrium grading policies



Supply-side Counterfactual Results on Share STEM

Male Female Gender
Share Share Ratio

Baseline 0.400 0.284 0.710

(6) Equalize exp grade for average student 0.440 0.334 0.760
(7) Change STEM prof prefs 0.235 0.126 0.536

Gender ratio=Women/Men



Conclusion

Preliminary evidence suggests men and women respond
differently to grading practices
A cheap way of changing the STEM gap may be to change
grading practices
May be important to take into account how professors
respond to university regulations on grading policies


