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Motivation

Models for risk and covariation are critical inputs in portfolio decisions and
risk management.

Trillions of dollars invested and traded on the basis of such models

Thousands of research papers developing such models

So demand is high, but supply is high too. What could possibly be left to
discuss?

We propose exploiting another source of information to improve models, both
univariate and multivariate, based on high frequency realized measures
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S&P 500 realized volatility in 2008
Annualized std dev ranges from 8.6% to 124%

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

A
nn

ua
liz

ed
 v

ol

0

20

40

60

80

100

120

Realized volatility in 2008

Patton (NYU & Duke) (Un)Reliable Realized Covariances IAAE 2016 � 3 �



S&P 500 realized volatility in late 2008
Annualized std dev ranges from 25.4% to 124% (peaks on Oct 10)
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S&P 500 realized volatility in late 2008, with 90% conf int
Volatility varies, and so does our ability to estimate volatility
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Measurement errors in �nancial data I

Measurement errors are pervasive in �nancial data

Accounting data: Beaver, Kettler and Scholes (1970, TAR), Easton and
Monahan (2005, TAR), and others.

Hedge fund data: smoothing (Getmansky, Lo and Makaraov 2004 JFE ),
strategic reporting (Patton Ramadorai and Streat�eld 2015 JF )

Volatility measures: Andersen and Bollerslev (1998 IER), Barndor¤-Nielsen
and Shephard (2002, JRSS-B)

In almost all cases, there is not much we can do:

Acknowledge their presence, attempt to infer resulting direction of bias

Use an instrumental variable, if one can be found and defended

Aggregate (eg, across �rms or time) in attempt to average away errors
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Measurement errors in �nancial data II

Recent work in high frequency econometrics allows us to directly estimate
degree of measurement error in volatility measures

In some applications, can be used to bias-correct estimators
(eg, Andersen, et al. 2005 Ecta)

F We use it to improve on existing methods for forecasting covariance matrices,
and thus decisions based on these covariance matrices
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Summary of main results

1 Models that use this information almost always outperform corresponding
models that ignore it.

Measures of statistical accuracy (in-sample and out-of-sample) are signi�cantly
improved using this information

2 Portfolio decisions are signi�cantly improved when using this information

Min variance portfolios that use this info have lower turnover and variance

�Management fees� for switching to our models range from 50 bps to 9%

3 Our methods substantially outperform existing shrinkage methods that do
not exploit information about measurement errors.

Ledoit & Wolf (2003, 2004), Jagannathan & Ma (2003), DeMiguel et al.
(2009)

4 Lower turnover, from less noisy forecasts, makes daily re-allocation pro�table

Transaction costs eliminate gains from standard models, but not ours.
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Outline

1 Motivation

2 Using measurement error information in predictive models

3 Empirical analysis of U.S. equity returns

In-sample and out-of-sample forecasting analysis

Portfolio decisions: minimum variance and tracking portfolio construction

Di¤erent re-balancing frequencies

4 Summary
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Realized measures and measurement errors I

Consider simple realized variance:

RVt =
mX
s=1

r 2st

where t denotes a day, s denotes an intra-daily period (eg, a 5-minute
period) and m is the number of intra-daily periods (eg, 79).

Under some assumptions, Barndor¤-Nielsen and Shephard (2002, JRSS-B)
show that p

m (RVt � IVt)
Ls�! MN (0; 2IQt) as m!1

where IV is the �integrated variance�and IQ is the integrated quarticity:

IVt =

tZ
t�1

�2 (s) ds and IQt =

tZ
t�1

�4 (s) ds
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Realized measures and measurement errors II

Critically, BNS (2002) also provide a way to estimate the asymptotic
variance, �realized quarticity�:

RQt =
m
3

mX
s=1

r 4st
p�! IQt as m!1

With this theory in hand, we can:

1 Estimate volatility (model free) for a given �rm on a single day, AND

2 Estimate the accuracy of our volatility estimate on each day.
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S&P 500 realized volatility in late 2008, with 90% conf int
Volatility varies, and so does our ability to estimate volatility
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Exploiting the errors

Consider the simple HAR model of Corsi (2009, JFEC ):

RVt = �0 + �dRVt�1 + �wRV t�5jt�2 + �mRV t�22jt�6 + "t

We know the RHS variables are measured with error, and that the
measurement error is time-varying.

Bollerslev, Patton and Quaedvlieg (2015, JoE ) attempt to capture these
features by extending the HAR model to include a �Q� term:

�d ;t = ��d + �q
gRQ1=2tgRQ1=2t � RQ1=2t � RQ1=2

We expect �q to be negative:

When measurement error (captured by RQ) is high, RV gets a lower weight in
the forecast ) shrinkage towards the mean

When RQ is low, RV gets greater weight ) more accurate information about
current level of volatility
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Measurement error and weight on RV
HARQ reacts less to RV when measured with greater error
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The multivariate problem and portfolio decisions

We consider a vector of asset returns rt = [r1;t ; :::; rN ;t ]
0
; with (N � N)

integrated covariance matrix �t :

�t =

tZ
t�1

� (s) ds

We consider estimating this matrix using the multivariate �realized kernel�
(RK) of Barndor¤-Nielsen, Hansen, Lunde and Shephard (2011, JoE).

That paper provides asymptotic distribution theory for this estimator:

m1=5 (vechRKt � vech�t)
Ls�! MN ( 0 ; 3:77� IQt)

and the (large) matrix IQt can be estimated using the methods of
Barndor¤-Nielsen and Shephard (2004, Ecta).
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Summarizing multivariate measurement error

For a collection of N asset returns, the BNS asymptotic covariance will be
1
2N (N + 1)�

1
2N (N + 1) ; and will have

dim f vech (IQt) g = 1
8

�
N4 + 2N3 + 3N2 + 2N

�
unique elements. Eg, for N = 10 it is 1540.

We consider only using the (square-root) diagonal elements of the IQ matrix
(denoted �t)

This captures (time-varying) measurement in each element of the realized
kernel, but does not attempt to exploit estimates of the covariances between
the measurement errors.
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EWMA(Q)

Firstly, consider the simple exponentially-weighted moving average �lter. This
can be represented as:

vt = (1� �) vt�1 + �st�1
where st = vech (RKt)

where � determines the exponential decay rate. Rather than �x this
parameter (eg, at 0.03) we estimate it using QML.

We extend this model to the following �EWMAQ�model:

vt = (1� �t�1) � vt�1 +�t�1 � st�1
�t�1 = �+ �Q~�t�1

We expect �Q < 0:
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HAR(Q)

Next we consider extending to exploit measurement error information is the
multivariate HAR model due to Chiriac and Voev (2010, JAE ). Consider the
�scalar� version of this model:

st = �0 + �d st�1 + �w st�5jt�2 + �mst�22jt�6 + "t
where st = vech (RKt)

st�hjt�i =
1

h � i + 1

hX
j=i

st�j

where all coe¢ cients are scalars.

We extend this model to the following �HARQ�model:

st = �0 + �d ;t�1 � st�1 + �w st�5jt�2 + �mst�22jt�6 + "t
�d ;t�1 = ��d + �Q~�t�1

We again expect �Q < 0:
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HAR-DRD(Q)

Next decompose the covariance matrix into a diagonal matrix of standard
deviations and the correlation matrix:

St = DtRtDt

Oh and Patton (2015, JoE ) suggested modelling each of the individual
variances using a HAR model, and then modelling the correlation matrix
using the scalar multivariate HAR of Chiriac and Voev (2010).

This allows more �exibility than the scalar MV HAR, but is easy to ensure
positive de�niteness.

We incorporate measurement error information into the univarate volatility
models (which comprise the Dt matrix)

This model has 5N + 4 parameters compared with 5 for the HARQ model

We do not attempt to use the information in the correlation model.

As correlations are bounded we anticipate less gains there.

Patton (NYU & Duke) (Un)Reliable Realized Covariances IAAE 2016 � 19 �



HEAVY(Q)

Finally, Noureldin, Shephard and Sheppard (2012, JAE) proposed the
multivariate HEAVY model:

Vt = E [rt r0t jFt�1]

is the conditional covariance matrix of the vector of returns. Let
vt =vech(Vt) : Then set:

vt = (I � b � a�)�V + bvt�1 + ast�1

We extend this to include a measure of estimation error:

vt = (I � b � at�1�)�V + bvt�1 + at�1 � st�1
at�1 = a+ aQ~�t�1

We follow Engle, Pakel, Shephard and Sheppard (2014) and estimate this
model by composite likelihood.
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Data

We use data on the SPY ETF and 10 Dow Jones stocks

AmEx, Boeing, Chevron, DuPont, GE, IBM, JP Morgan,
Coca Cola, MSFT, Exxon

Sample period: April 1997 to Dec 2013, T = 5267:

Realized Realized
Variance Quarticity

Mean St Dev Mean St Dev
SPY 0.954 1.165 3.882 13.933
AmEx 3.906 55.941 3.694 12.797
Boeing 2.782 16.425 1.714 5.192
Chevron 1.975 13.185 0.671 1.775

...
...

...
...

...

Important for this paper: quarticity is far from constant through time.
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In-sample estimation results: EWMA
Robust standard errors in parentheses

RiskMetrics \RiskMetrics EWMA EWMAQ
� 0:06 0:013 0:079 0:102

(�) (0:002) (0:003) (0:004)
�Q �0:004

(0:001)
QLIKE 16.395 15.662 15.408 15.393
Frobenius 14.295 13.892 12.324 12.255

Using high frequency data improves the EWMA model, and using info on
measurement error improves it even further:

The �Q�variable is strongly signi�cant

Weight on daily information goes up (on average)
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In-sample estimation results: MV HAR
Robust standard errors in parentheses

HAR HARQ
�d 0:247 0:541

(0:040) (0:040)
�w 0:410 0:333

(0:038) (0:038)
�m 0:244 0:113

(0:038) (0:038)
�Q �0:043

(0:018)

The �Q�variable is strongly signi�cant

Weight on daily information goes up (on average)
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In-sample estimation results: HEAVY
Robust standard errors in parentheses

HEAVY HEAVYQ
a 0:106 0:148

(0:009) (0:009)
b 0:876 0:825

(0:004) (0:004)
aQ �0:026

(0:012)

The �Q�variable is strongly signi�cant

Weight on daily information goes up (on average)
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Out-of-sample forecast comparisons

We next consider out-of-sample comparisons of these forecasting models

Forecasts are based on a rolling window of 1000 days, updated each day

Compare �std�and �Q�models using Diebold-Mariano (1995, JBES)

Find the set of best models using the �Model Con�dence Set� (Hansen, et
al. 2011, Ecta)
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Out-of-sample forecast comparisons
Avg Frobenius and QLIKE distance, Diebold-Mariano tests (*)

Frobenius QLIKE
HAR DRD EW HVY HAR DRD EW HVY

Std 12.31 12.13 12.38 12.47 14.38 14.14 14.11 14.05
Q 12.11 11.98 12.18 12.16 14.16 13.90 14.09 14.00
di¤ 0.20* 0.16* 0.20* 0.31* 0.22* 0.24* 0.01* 0.05*

�Q�beats �standard�version for all four model comparisons: average
distance is signi�cantly higher (at 0.05 level)

� �Q�models are almost always in the �Model Con�dence Set;�
std models are almost never.
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Improved portfolio decisions: min variance portfolios I

Consider the global minimum variance portfolio problem:

w�t = argmin
w

w0tHtjt�1wt s.t. w0t� = 1

=
H�1tjt�1�

�0H�1tjt�1�

We will then compare covariance matrix forecasts by the out-of-sample
variance of the estimated minimum variance portfolios they generate.

We will also compare their turnover:

Turnt =
NX
i=1

�����w�(i)t+1 � w
�(i)
t

1+ r (i)t
1+w�0t rt

�����
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Improved portfolio decisions: min variance portfolios II

We consider transaction costs proportional (c) to the portfolio turnover,
with c 2 f0; 1; 2g%; (Fleming et al. 2003, JFE ; Brown & Smith 2011, MS).

The after-costs returns are then:

rpt = w�0t rt � c� Turnt

Finally, we compute the realized utility for quadratic utility investor:

U (rpt ; ) = (1+ rpt)�
1
2



1+ 
(1+ rpt)

2

And use this to compute a �management fee,��; that makes the investor
indi¤erent between models a and b:

1
T

TX
t=1

U
�
r (a)pt ; 

�
=
1
T

TX
t=1

U
�
r (b)pt ��; 

�

Patton (NYU & Duke) (Un)Reliable Realized Covariances IAAE 2016 � 30 �



Global min variance portfolio results: Vol, turn, and S.R.
Std dev and turnover are both lower in all cases for �Q�models

HAR DRD EWMA HEAVY
std Q std Q std Q std Q

Mean 3.08 3.16 3.61 4.37 3.46 3.87 3.85 4.12
S.D. 14.92 14.78 15.02 14.57 14.97 14.64 14.92 14.61
Turn 0.52 0.39 0.39 0.34 0.14 0.10 0.17 0.12

Sharpec=0% 0.206 0.214 0.241 0.300 0.231 0.264 0.258 0.282
Sharpec=1% 0.118 0.148 0.175 0.241 0.208 0.248 0.229 0.261
Sharpec=2% 0.030 0.082 0.109 0.183 0.185 0.231 0.200 0.240

Q models generate lower OOS variances for estimated min. var. portfolio

Turnover is also reduced (less �noisy� forecasts)
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Global min variance portfolio results: Management fees
�Management fees� for moving from nonQ to Q models are up to 168 bps

HAR DRD EWMA HEAVY

c = 0% �1 9.7 82.6* 46.2 32.2
�10 27.3 142.6* 90.9* 73.3*

c = 1% �1 44.3* 95.6* 55.9* 44.9*
�10 61.9* 155.6* 100.7* 86.0*

c = 2% �1 78.8* 108.6* 65.7* 57.6*
�10 96.4* 168.7* 110.4* 98.7*
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Tracking error minimization results: Volatility and turnover
Std dev and turnover are both lower in all cases for �Q�models

Next we consider tracking portfolio construction

We �nd the weights on the 10 stocks that track the SPY

Then measure the OOS variance of the tracking error

HAR DRD EWMA HEAVY
std Q std Q std Q std Q

S.D. 6.618 6.489 6.610 6.521 6.636 6.513 6.637 6.506
Turn 0.173 0.102 0.134 0.114 0.063 0.045 0.080 0.057
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Tracking error minimization results: Management fees
�Management fees� for moving from nonQ to Q models are up to 75 bps

HAR DRD EWMA HEAVY

c = 0% �1 29.1 27.8 33.6 32.5
�10 39.1 35.0* 43.4 42.8

c = 1% �1 46.9* 42.8* 38.2 38.5
�10 56.9* 50.0* 47.9* 48.8

c = 2% �1 64.6* 47.8* 42.7* 44.5*
�10 74.6* 55.0* 52.5* 54.8*
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Comparison with existing shrinkage methods I

Next, we compare our approach with leading methods from the literature.

We take the �DRD�model forecasts as the baseline and consider various
ways of improving/shrinking those forecasts:

1 No shrinkage at all

2 Dynamic shrinkage using �Q� information: the DRDQ model

3 1/N (DeMiguel, Garlappi and Uppal 2009): Just use an equal-weighted
portfolio

4 Jagannathan and Ma: Impose short-sales constraint when constructing
optimal portfolio weights
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Comparison with existing shrinkage methods II

Then we consider shrinkage methods based on:

Htjt�1 = �t�1Ft�1 + (1� �t�1) St�1

where St is the realized kernel, Ft is the shrinkage target and �t controls the
degree of shrinkage.

5 Single factor (Ledoit and Wolf 2003): keep variances unshrunk, but shrink
correlations towards an estimate based on a one-factor model.

6 Equicorrelation (Voev 2008): keep variances unshrunk, but shrink
correlations towards an estimate based on an equicorrelation structure.

7 Identity (Ledoit and Wolf 2004): Shrink entire covariance matrix towards the
identity matrix.

In methods 5�7, we use the �optimal� shrinkage factor (�t) from LW (03).
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Global min variance portfolio results: Vol and S.R.
Std dev is lowest, and Sharpe ratio is highest, for DRDQ

Shrinkage
DRDQ DRD J-Ma 1/N Factor Equicorr Identity

Mean 4.371 3.612 3.922 1.044 3.700 3.723 2.753
S.D. 14.57 15.02 15.30 18.58 14.99 14.98 15.07
Turn 0.339 0.391 0.322 0.009 0.369 0.361 0.303

Sharpec=0% 0.300 0.241 0.256 0.056 0.247 0.249 0.183
Sharpec=1% 0.241 0.175 0.203 0.055 0.185 0.188 0.132
Sharpec=2% 0.183 0.109 0.150 -0.054 0.123 0.127 0.081
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Global min variance portfolio results: Management fees
�Mgmt fees� for moving from given method to DRDQ model: 40 to 900 bps

All relative
to DRDQ Shrinkage

DRD J-Ma 1/N Factor Equicorr Identity

c = 0% �1 82.6* 51.7* 399.2* 73.3* 70.9* 169.3*
�10 146.0* 150.0* 997.1* 129.0* 125.8* 237.2*

c = 1% �1 95.6* 47.4* 316.2* 80.9* 76.5* 160.3*
�10 155.6* 145.7* 914.1* 136.7* 131.4* 228.1*

c = 2% �1 108.6* 43.1* 233.1* 88.6* 82.1* 151.3*
�10 168.7* 141.5* 831.1* 144.4* 137.0* 219.1*
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Outline

1 Motivation

2 Using measurement error information in predictive models

3 Empirical analysis of U.S. equity returns

In-sample and out-of-sample forecasting analysis

Portfolio decisions: minimum variance and tracking portfolio construction

Di¤erent re-balancing frequencies

4 Summary
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Global min variance portfolio: daily, weekly, monthly
�Q� information also improves models at weekly and monthly frequencies

Daily Weekly Monthly
std Q std Q std Q

Mean 3.61 4.37 3.12 3.26 3.24 3.36
S.D. 15.02 14.57 15.37 14.73 15.59 15.54
Turn 0.39 0.34 0.11 0.12 0.03 0.03

Sharpec=0% 0.241 0.300 0.203 0.221 0.205 0.217
Sharpec=1% 0.175 0.241 0.185 0.201 0.200 0.211
Sharpec=2% 0.109 0.183 0.166 0.181 0.195 0.206

Q models generate lower OOS variances for estimated min var portfolio

Turnover is also reduced (less �noisy� forecasts)
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Global minimum variance portfolio: daily, weekly, monthly
�Management fees� for moving from nonQ to Q models are signif even for monthly models

Daily Weekly Monthly

c = 0% �1 82.6* 23.1 16.9
�10 142.6* 108.9* 61.6*

c = 1% �1 95.6* 22.0 16.8
�10 155.6* 107.8* 61.5*

c = 2% �1 108.6* 20.9 16.8
�10 168.7* 106.6* 61.5*
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Gains from daily re-balancing?

When incorporating transaction costs, one might expect that the gains from
re-balancing more frequently are eroded.

We now compare monthly DRDQ with daily DRD and DRDQ models

And weekly DRDQ models with daily DRD and DRDQ models

Our hope is that the daily DRDQ model has reduced the �spurious turnover�
su¢ ciently that it is competitive with lower-frequency re-balancing in the
presence of realistic transaction costs.
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Global min variance portfolio results: Management fees
�Management fees� for switching from lower frequency to daily model

Weekly (Q) Monthly (Q)

Daily std Q std Q

c = 0% �1 31.2 113.7* 92.4* 174.9*
�10 -6.6 136.0* 152.7* 295.4*

c = 1% �1 -38.1 57.5* 1.7 97.3*
�10 -75.9* 79.7* 61.9* 217.7*

c = 2% �1 -107.3* 1.3 -88.9* 61.1*
�10 -145.2* 23.5 -28.8 140.0*
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Global min variance portfolio results: Management fees
�Management fees� for switching from lower frequency to daily model

Weekly (Q) Monthly (Q)

Daily std Q std Q
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Outline

1 Motivation

2 Using measurement error information in predictive models

3 Empirical analysis of U.S. equity returns

In-sample and out-of-sample forecasting analysis

Portfolio decisions: minimum variance and tracking portfolio construction

Di¤erent re-balancing frequencies

4 Summary
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Summary

We propose using information about time-varying measurement error in high
frequency volatility measures to improve forecasts.

The degree of measurement error also needs to be estimated, and so whether
it actually helps is an empirical question.

We �nd that incorporating information about measurement error leads to
statistically signi�cant and economically meaningful gains:

1 Models that use this information almost always outperform corresponding
models that ignore it.

2 Minimum variance and tracking portfolios that use this information have lower
turnover and lower variance

Our methods substantially outperform existing shrinkage methods that do
not exploit information about measurement errors.
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Appendix
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Out-of-sample comparisons: low/high meas. error days
Avg QLIKE loss. Bold=in 90% MCS. *=Q beats nonQ

Full sample Lower 95% jj�t jj Upper 5% jj�t jj
HAR 14.382 13.275 32.651
HARQ 14.159* 13.206* 32.190*

HAR-DRD 14.140 13.022 32.603
HAR-DRDQ 13.896* 12.990* 31.050*

EWMA 14.105 13.109 32.686
EWMAQ 14.091* 13.122 32.643*

HEAVY 14.051 13.041 32.263
HEAVYQ 14.004* 13.050 32.258
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Global minimum variance portfolio results - no short sales
Std dev and turnover are both lower in all cases for �Q�models

HAR DRD EWMA HEAVY
std Q std Q std Q std Q

Mean 3.75 3.93 3.92 4.63 3.93 4.36 4.23 4.67
S.D. 15.37 14.98 15.30 14.86 15.26 14.82 15.25 14.78
Turn 0.39 0.28 0.32 0.28 0.10 0.07 0.13 0.09

Sharpec=0% 0.244 0.262 0.256 0.312 0.257 0.294 0.277 0.316
Sharpec=1% 0.180 0.214 0.203 0.264 0.241 0.282 0.256 0.300
Sharpec=2% 0.116 0.167 0.150 0.217 0.224 0.270 0.234 0.284

Q models generate lower OOS variances for estimated min. var. portfolio

Turnover is also reduced (less �noisy� forecasts)
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Global minimum variance portfolio results - no short sales
�Management fees� for moving from nonQ to Q models are up to 168 bps

HAR DRD EWMA HEAVY

c = 0% �1 23.1 77.8* 62.3 64.7
�10 76.1 137.6* 114.7* 120.0*

c = 1% �1 49.7 88.4 57.0 60.6
�10 102.8* 148.3* 116.4* 126.6*

c = 2% �1 76.4* 99.0* 64.3* 70.3*
�10 129.4* 158.9* 123.9* 133.2*
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Global minimum variance portfolio results
Gains from applying shrinkage to our DRDQ model?

Shrinkage on DRDQ
DRDQ J-Ma Factor Equicorr Identity

Mean 4.371 4.633 4.546 4.605 4.088
S.D. 14.57 14.86 14.53 14.52 14.60
Turn 0.339 0.280 0.322 0.316 0.260

Sharpec=0% 0.300 0.312 0.313 0.317 0.280
Sharpec=1% 0.241 0.264 0.257 0.262 0.235
Sharpec=2% 0.183 0.217 0.201 0.207 0.190
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Global minimum variance portfolio results
�Management fees� for applying shrinkage to the DRDQ model?

All relative
to DRDQ Shrinkage on DRDQ

J-Ma Factor Equicorr Identity

c = 0% �1 -17.8 -18.0 -24.1 28.9
�10 -22.4 -22.7 -30.2* 33.4*

c = 1% �1 -32.4* -22.2 -29.8* 9.0
�10 -36.7* -26.9 -35.9* 13.5

c = 2% �1 -51.2* -26.4 -35.5* -10.9
�10 -47.4* -31.0 -41.6* -6.4
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